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T
ampa Bay Water is the largest wholesale
supplier of water in the state of Florida,
serving more than 2.5 million people in

the Tampa Bay Area (Figure 1). Some of the
wellfields in Tampa Bay Water’s system have
been pumping groundwater for over 50 years.
Groundwater continues to be a vital part of
the Tampa Bay region’s water supply, with
more than 50 percent of the regional supply
coming from wellfields (Tampa Bay Water,
2017). Though groundwater pumping has
been drastically cut back, previous pumping
from these wellfields contributed to lower
water levels in some of the region’s lakes and
wetlands, which led to deleterious ecological
changes. 

In 1998, Tampa Bay Water gained owner-
ship and control of all of the regional wellfields
in the Tampa Bay area. The Southwest Florida
Water Management District (SWFWMD) is-
sued a new permit to Tampa Bay Water that
consolidated the permits for 11 of these well-
fields located in Pasco, northern Hillsborough,
and northeast Pinellas counties. This new per-
mit, known as the “consolidated permit,” low-
ered the permitted annual average pumping
limit for these 11 wellfields from 192 mil gal per
day (mgd) to 90 mgd. Tampa Bay Water cur-
rently operates these wellfields as an intercon-
nected system at this lower pumping limit to
promote environmental recovery near the well-
fields.

Background

Tampa Bay Water is required by Special
Condition 11 of Water Use Permit (WUP) No.
20011771.001 to evaluate “the recovery of water
resource and environmental systems attributable
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Figure 1. Tampa Bay Water existing groundwater and
newer surface water supplies.

Figure 2. Unmonitored sites of concern and Tampa Bay Water wellfields.
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to reduction of…withdrawals…to 90 mgd.” As
described in the permit recovery assessment work
plan and schedule (Tampa Bay Water, 2012), a
key issue to be resolved is how “wetland health
(or recovery) criteria may be applied to wetlands
lacking hydrologic data” (i.e., “unmonitored”
wetlands). Tampa Bay Water (2013) previously
defined areas of investigation for the recovery
analysis using hydrologic modeling output and
geographic information systems (GIS) analyses
to produce a composite 2-ft surficial aquifer sys-
tem (SAS) drawdown (DDN), representing the
maximum of historical pumpage and several
possible future scenarios, both scaled to 90 mgd. 

A recovery assessment GIS deliverable pre-
viously prepared by Greenman-Pedersen Inc.
(GPI), and provided to Tampa Bay Water in Jan-
uary 2016, found 684 unmonitored sites occur-
ring within the 2-ft SAS DDN contour,
consisting of 675 wetlands and nine lakes, shown
in Figure 2. (Subsequent analyses, based on re-
vised modeling output available after the com-
pletion of this study, have increased the number
of unmonitored sites to 749, and results for the
entire set will be reported in a future publica-
tion.) Tampa Bay Water is being assisted by GPI
in developing proposed methods for estimating
ecological and hydrological conditions at un-
monitored sites. This article describes these pro-
posed recovery assessment methods, as well as
preliminary results of analyses performed to fa-
cilitate method development. 

Following approval of the proposed meth-
ods, it’s anticipated that they will be applied in
a future project phase to aid in the assignment
of unmonitored sites to appropriate recovery as-
sessment (RA) status bins. These bins document
wetland/lake conditions relative to approved re-
covery metrics, as well as evidence of trends to-
wards recovery, and they consist of the following
categories: 
S Never impacted 
S No cutback, meets metric
S Recovered
S Improved, not fully recovered 
S Not fully recovered, continuing wellfield im-

pact
S Impacted due to other causes
S More detailed analysis needed

Conceptually, the problem of assessing un-
monitored wetlands is one of statistical interpo-
lation. Specifically, there is a need to develop
defensible approaches for transferring informa-
tion from nearby sites with known recovery as-
sessment statuses to unmonitored sites. The
term “nearby” might imply physical proximity,
but it could also imply proximity in multivari-
ate space (i.e., statistical “nearest neighbors”).
Determination of appropriate spatial support

(e.g., “Over what distance is recovery status cor-
related?”) is a subset of the overall problem of
determining how recovery varies among sites
that are close in a statistical sense. Development
of statistical models to allow inference at un-
monitored wetlands requires the development of
adequate datasets from nearby monitored wet-
lands collected from an appropriate time period
(e.g., the period after wellfield production was
reduced to 90 mgd, or postcutback). 

In seeking to develop these methods, it’s an-
ticipated that the methods might vary by wet-
land community type (e.g., isolated cypress) or
surrounding soil classification (i.e., xeric or
mesic) based on previous findings that water lev-
els in wetlands in different soil settings behave
differently (GPI, 2016). Methods also were an-
ticipated to be hierarchical in nature, meaning
that broad screening tools would be proposed as
a first cut to classify, or bin, wetlands using the
least amount of new data collection. 

The unmonitored wetlands and lakes of
concern occur primarily in eight regions within
the northern Tampa Bay (NTB) area associated
with various wellfields (Figure 2): 
S Eldridge-Wilde (ELW)
S Northwest Hillsborough (NWH)
S Section 21 (S21)
S Morris Bridge (MBR)
S Cypress Bridge (CYB)
S Cypress Creek (CYC)
S Cross Bar Ranch (CBR)
S CYC/CBR interwellfield area 

More than 400 wetlands, lakes, and con-
nected systems with water-level data (i.e., mon-
itored sites) also occur in and around these areas,
providing a potential basis for statistical inter-
polation to the unmonitored sites. Some ecolog-
ical data are available for selected unmonitored
sites, including wetland health assessment
(WHA) data from previous SWFWMD studies.
This present study also investigates the utility of

several regional datasets believed to have some
potential for supporting predictions of wetland
water levels at unmonitored sites, including SAS
DDN, Upper Floridan aquifer (UFA) DDN, and
surrounding soil classification.  

Given the large number of potential vari-
ables that might be useful for interpolating water
levels at unmonitored sites, the discipline of ma-
chine learning, a field of computer science that
develops algorithms that can learn from and
make predictions on data (Alpaydin, 2009), was
used to help develop robust statistical models,
which are those that are expected to perform
well on new data, meaning they are not “overfit”
to unique aspects of a particular dataset. The
danger in overfitting is that a model that appears
to perform well on past data (or data located in
certain spatial areas) will perform poorly in the
future (or in other unstudied spatial locations)
because the analyst mistakenly fit the model to
noise rather than signal in the development
dataset (James et al., 2017). 

In the past three decades, there has been in-
creasing recognition of the value of hybrid spa-
tial interpolation approaches to predicting values
at unmonitored locations. These hybrid tech-
niques combine two conceptually different but
complementary techniques: analysis by multiple
linear regression (or other machine learning al-
gorithm) to predict based on aspatial auxiliary
variables, and spatial interpolations based solely
on values of the known points and their spatial
autocorrelation characteristics (e.g., kriging). 

Typically, these hybrid techniques provide
more accurate predictions than either single ap-
proach (Hengl et al., 2007). Hybrid spatial inter-
polation techniques have been applied
successfully to problems such as water-table
mapping (Desbarats et al., 2002), interpolation
of soil properties (Odeh et al., 1994; Hengl et al.,
2015), and estimation of rainfall (Pardo-
Iguzquiza, 1998), among many others.   

Figure 3. Conceptual model of regression-kriging approach to predicting data at unmonitored sites.

Continued on page 38
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Regression-kriging (RK) is a general term
used to describe a hybrid spatial interpolation
technique that may involve the separate fitting
of an aspatial model (e.g., multiple linear re-
gression, random forest, etc.) and subsequent
kriging of residuals from the model (Hengl et al.,
2003). Key assumptions of the technique are that
residuals are normally distributed with constant
variance and the values of the auxiliary variables
are known at all locations needed for prediction. 

Methods

In this study, RK was used for development
of the best model to predict historical median
(2008-2014) wetland water levels at unmoni-
tored sites by using a combination of aspatial
and spatial information from nearby monitored
sites. The technique required development of the
best possible multiple linear regression model
(i.e., selecting most predictive variables while
avoiding overfitting), and then examining the
residuals from that model for spatial autocorre-
lation. If positive spatial autocorrelation was
found to be present, then kriging of the residu-
als would be expected to result in improved pre-
dictions for the unmonitored sites (Hengl, 2009).
In other words, if there is a tendency for the ini-
tial aspatial model to predict median wetland
water levels too high or too low in spatial clus-
ters, it’s implied that unmeasured but spatially
autocorrelated factors—not included in the ini-

tial model—are affecting the outcome. Although
those factors aren’t known, their effect can be
modeled at unmonitored sites using the tech-
nique of kriging, which is a geostatistical proce-
dure that predicts how similarity in the residuals
changes with distance. Kriging estimates devia-
tions at unmonitored sites by a weighted averag-
ing of nearby residuals. With positive spatial
autocorrelation, residuals near each other will
tend to be more similar than residuals farther
apart. 

In summary, RK involves spatially interpo-
lating residuals from an aspatial model using
kriging and adding the results to the predictions
from the aspatial model. Conceptually, the aspa-
tial regression predictions for unmonitored sites
will be adjusted up or down based on the resid-
ual deviations of nearby sites (Figure 3).

The focus of hydrologic prediction at the
unmonitored sites was the median water level for
years 2008-2014 relative to a high water mark at
each site known as the historical normal pool
(HNP). The offset of the median water level rel-
ative to the HNP—known as the normal pool
offset (NPO)—was selected to represent the
most appropriate surface water hydrologic cor-
relate of wetland health, based on the results of
scientific investigations performed in the NTB
area, including the development of minimum
levels for isolated cypress-dominated systems
(SWFWMD, 1999). The NPOs represent the
“offset” of wetland water levels from a reference
elevation of historic inundation (i.e., the normal

pool). The HNP offsets can be related to historic
conditions and they are not affected by differing
wetland depths, unlike hydroperiods. Also, the
use of a local wetland reference datum, like HNP,
allows for the analysis of a large number of sites
occurring across a wide range of absolute eleva-
tions on a common scale (i.e., ft below HNP).
The seven-year time period of 2008-2014 was
considered appropriate because it represented a
postcutback and operationally stable pumpage
configuration, with a range of rainfall condi-
tions, although this time period may be conser-
vative (i.e., underpredicting long-term median
wetland water levels), depending on the time
frames involved in the reduction of groundwater
pumpage on the local scale, and the subsequent
aquifer response.

The interpolation methods involved: 
S Identifying all sites (e.g., lakes, isolated wet-

lands, and connected wetlands) with HNP el-
evations and water-level data for the period
of 2008-2014.

S Excluding or truncating erroneous data.
S Determining appropriate groups for interpo-

lation.
S Determining auxiliary variables potentially

useful for aspatial prediction of NPOs. 
S Developing the best aspatial multiple linear re-

gression model using an information crite-
rion-based search through all possible models.

S Performing RK to fit a variogram model to
explain spatial-autocorrelation in residuals
from the aspatial multiple linear regression
model.

A small number of sites were excluded due
to groundwater augmentation or data problems.
There were 309 monitored sites (wetlands and
lakes) with adequate data to calculate a median
offset for 2008-2014 for use in developing a
model to predict water levels at the unmonitored
sites. Wetland and lake water levels for moni-
tored sites primarily were obtained from either
Tampa Bay Water or SWFWMD using their ap-
plications (DataMart and work management in-
formation system [WMIS], respectively).
Appropriate care was taken to ensure that a com-
mon vertical datum was used, as some records
were available in both National Geodetic Vertical
Datum (NGVD)29 and North American Vertical
Datum (NAVD)88 through WMIS. (An Excel
spreadsheet of mean monthly lake levels was
provided by Brian Ormiston and Claudia
Listopad.) 

Wetland and lake NPOs were calculated by
subtracting HNPs from the median water levels
for the period 2008-2014. Medians were calcu-
lated using all available data for the period of in-
terest. Visual examination of hydrographs was

Figure 4. Hydrograph documenting increasing six-year median 
water levels following production cutbacks.
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performed to confirm that the calculated medi-
ans would be representative (i.e., excessive dry
values might prevent calculation of accurate me-
dians). The HNPs were obtained from a variety
of sources that had been compiled for the RA
GIS (RAGIS) project (GPI and Applied Ecology,
2015). These HNPs were checked against an en-
vironmental management plan (EMP) database
maintained by Tampa Bay Water. 

Specific NPOs are known from past studies
(e.g., SWFWMD, 1999; GPI, 2016) to represent
recovered conditions for monitored wetlands,
depending on the type of wetland (e.g., isolated
or connected) and the surrounding soil type
(e.g., mesic or xeric). For example, Figure 4
shows that, following the decrease in local
groundwater production at the North Pasco
Wellfield, the six-year running median water
level rose above the surrogate minimum level
(calculated as a NPO of -1.8 ft). In other words,
when the six-year median is shown to rise above
the relevant site-specific threshold NPO, the site
is considered “low or no stress” and, therefore,
hydrologically recovered. 

A decision was made to transform the de-
pendent variable, NPO, in order to improve the
normality of residuals from the planned linear
model. Specifically, the following transforma-
tion was used:

Prior to applying the transformation, three
sites with very small positive HNPs were ad-
justed to zero. (One interesting consequence of
using a nonlinear transformation on the de-
pendent variable is that prediction intervals gen-
erated from a fitted statistical model will not be
symmetric when the prediction intervals are
transformed back into their original scale.)  

A variety of independent or auxiliary vari-
ables were obtained and prepared to provide the
best possible aspatial portion of the RK model.
These 12 independent variables are shown in
Table 1. 

Maps of several of the independent vari-
ables prepared and investigated (GPI, 2017) are
provided here. The SAS DDN (Figure 5) was
based on a 12 nearest-neighbors inverse-dis-
tance-squared weighted interpolation derived
from a point file provided by Tampa Bay Water,
representing the maximum of the historical pro-
duction and scaled pumpage scenarios described
(Tampa Bay Water, 2013). In Figure 5, positive
numbers represent ft of predicted surficial
aquifer DDN in the NTB area associated with
anticipated distributions and rates of ground-
water production (scaled to 90 mgd).  

A classified soils layer (Figure 6) prepared
from U.S. Department of Agriculture Natural

Table 1. Independent variables evaluated for use in predicting wetland/lake median normal pool offsets.

Figure 5. Surficial aquifer system drawdown (ft): 12 nearest-neighbors 
inverse-distance-squared weighted interpolation.

Continued from page 38
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Resources Conservation Service (USDA-NRCS)
soil survey geographic (SSURGO) data in a pre-
vious xeric wetlands study (GPI, 2016) was used
to determine two variables: xeric ratio and xeric
yes/no (Y/N). Xeric ratio was calculated using
the methods described in Berryman & Henigar
Inc. and SDI Environmental Services Inc. (2000).
A 500-ft buffer was constructed around each
wetland or lake of interest and the ratio of the
following areas calculated:

Xeric Y/Ns representing a binary threshold-
ing of xeric ratios greater than 27 percent were
considered “Y” (i.e., yes, they are xeric-associated
sites), while those with less than or equal to 27
percent were considered “N” or no. The splitting
criterion of 27 percent was based on methods
presented in Berryman & Henigar Inc. and SDI
Environmental Services Inc. (2000). 

Mean rainfall for 2008-2014 was calculated
based on 11 gap-filled stations using a 10 near-
est-neighbors inverse-distance-squared weighted
interpolation (Figure 7). All rainfall data were
obtained from Tampa Bay Water, except for
26353 CLERMONT 9 S NWS, which was pro-
vided by the National Oceanic and Atmospheric
Administration (NOAA). The 11 rainfall station
locations used were: 
S RN-CBR-CB01
S RN-STK-STK14
S RN-NOP-NOP
S RN-NHW-5
S RN-MBR-3C
S RN-NWH-S21
S RN-ELW-METER_PIT
S RN-CYB-CYB7
S RN-CYC-CC3
S RN-CNR-T3
S 26353 CLERMONT 9 S NWS

A best subsets regression search was under-
taken using the Bayesian information criterion
(BIC) to avoid overfitting. Minimization of the
BIC allowed identification of the model in a set
of candidate models that gave the best balance
between model fit and complexity, with the in-
tent that whatever variables resulted in the most
probable model from a BIC perspective would
also yield valid predictions using out-of-sample
data in the future. The best subsets regression,
performed using the glmulti package in R
(Calcagno and de Mazancourt, 2010), consisted
of fitting all possible regression models without
interactions (more than 4,000 models) using all

various combinations of the 12 independent
variables. The final selected variables were used
in a multiple linear regression, allowing interac-
tions (i.e., the final aspatial model).

Spatial autocorrelation remaining in the
residuals from the final aspatial model was mod-
eled using a variogram as part of the RK process.
At a conceptual level, kriging represents a family
of interpolation techniques that explicitly model
the spatial autocorrelation in the data using a
technique called the variogram (Figure 8). The
variogram is an empirical measure of how dif-
ferences between pairs of sample points change

Figure 6. Classified soils layer from previous xeric wetlands research.

Figure 7. Mean rainfall for 2008-2014 (in.); orange dots represent rain gauges.
Figure 8. Diagram of an idealized variogram

(Google, 2016).

Continued on page 42



with distance. The typical plotted variogram
function (the semivariance) rises as distance in-
creases (Figure 8), indicating that the average dif-
ferences between values at locations in the study
area are smaller when the samples are close to-
gether and much larger when they are farther
apart. The point where the semivariance func-
tion flatlines represents the distance (range) at
which positive spatial autocorrelation is negligi-
ble. Note that a portion of the variance, called
the nugget, cannot be explained based on prox-
imity to other samples (Figure 8); it could, how-
ever, represent some combination of variability
at distances smaller than the typical sample dis-
tance, measurement error, or variability due to
unmeasured factors. The variogram provides a
method for weighting the influence of nearby
sites in estimating unknown values (i.e., a data-
driven estimate of the spatial covariance between
samples).

The focus of ecological condition interpo-
lation was the five-year WHA rating. The WHA
program has been performed at more than 400
wetlands in the NTB area in four general time
periods: 1997/1998 (Rochow, 1998), 2004/2005
(Bureau Veritas et al., 2006), 2009/2010 (GPI
Southeast Inc. et al., 2010), and most recently in
2016. Among other data collected at each site, an
overall WHA rating on a 1-3 scale is available.
This rating represents a “relative estimation of
wetland health” with sites rated 1 being consid-
ered “severely stressed,” those rated 2 as “moder-
ately stressed,” and those rated 3 as “low or no
stress.”

Although this rating is ultimately based on
the professional opinion of the environmental
scientist performing the field evaluation, the
opinion is supported by detailed information
collected, such as which plant species were pres-

ent at each site and various wetland-quality
questions (e.g., “fallen trees”: >25, 5-25, or <5
percent). The WHA ratings do not attribute a
cause for observed stress, although relevant ob-
servations regarding land use, ditching, etc., are
included on the field sheets.

Based on availability for this study, a file was
prepared representing 2009 conditions to use as
the basis for understanding ecological conditions
across the study area. The following data were
included in the 2009 conditions file: 423 WHA
ratings actually collected in 2009/2010 (but 20
of those were outside study area), and 3 ratings
only (n=472) from 1997/1998 at those sites
where no 2009/2010 data existed. The rationale
for including sites rated 3 from 1997/1998 in the
2009 conditions file is that conditions are un-
likely to have worsened in most areas due to de-
creased production. The combined 2009 dataset
provided 895 sites with a rating of 1, 2, or 3. In
the present study, ecological conditions were in-
terpolated across the NTB area using the inverse-
distance-squared weighted interpolation in
ArcGIS using the 12 nearest neighbors and then
assigned to the unmonitored sites. 

Hydrologic Results

Figure 9 represents the information criteria
(IC) profile plot, or the ranked BIC values of the
very best models evaluated in the all-subsets re-
gression search through all possible combina-
tions of the 12 candidate auxiliary variables.
Note that “best” in this context implies that the
lowest BIC value represents the most likely
model, minimizing overfitting, given this partic-
ular dataset. The red line in Figure 9 is placed
two BIC units above the very best model, based
on the rule of thumb that any models within two
BIC units of the best one are worth considering

(Calcagno and de Mazancourt, 2010). When
faced with multiple “best” models, investigators
may wish to explore a model-averaging ap-
proach, also known as multimodel inference
(Burnham and Anderson, 1998). In this case,
only the very best model was chosen to be im-
plemented (lowest BIC).   

The best subsets regression search among
all possible combinations of the 12 auxiliary
variables resulted in just three variables being in-
cluded in the BIC best model: SAS DDN, xeric
ratio, and intermediate aquifer (IA) thickness
with a minimum BIC of 392.7 (Figure 9). Al-
though referred to as IA thickness by the creators
of the Florida aquifer vulnerability assessment
(FAVA) dataset, it’s been noted that much of the
NTB area lacks an intermediate aquifer, and this
variable might be more appropriately reduced to
a simple presence/absence of a confining layer. 

The final aspatial model selected used the
three variables identified by the BIC best subsets
search—SAS DDN, xeric ratio, and IA thick-
ness—and allowed for interactions among them.
This final model had an adjusted R-squared of
0.33 (Figure 10). Visualizations of the partial
residuals were performed using the R package vi-
sualization of regression models (visreg) from
Breheny and Burchett, 2016. The visualizations
documented the modeled effects of each inde-
pendent variable, while statistically holding
other variables constant (either at their median
values or two selected values to allow visualiza-
tion of interactions).

The SAS DDN showed the expected rela-
tionship, with larger negative NPOs associated
with larger DDNs in Figure 11 (larger negative
NPOs were represented as larger positive values
on the transformed scale). Higher xeric ratios
were also associated with larger negative NPOs

Figure 9. Bayesian information criteria profile plot 
from R package glmulti output.

Figure 10. Final aspatial regression model R output.

Continued on page 45
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Figure 11. Partial residuals visualization: surficial aquifer system draw-
down.

Figure 12. Partial residuals visualization: xeric ratio.

Figure 13. Partial residuals visualization: surficial aquifer system draw-
down by xeric ratio.

Figure 14. Partial residuals visualization: surficial aquifer system draw-
down by intermediate aquifer thickness.

Figure 15. Experimental residual variogram and variogram model. Figure 16. Cross-validated back-transformed regression-kriging
residuals.
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(Figure 12). The relationship between SAS DDN
and NPOs showed an interaction with xeric
ratio, so that sites with 100 percent xeric ratios
tended to have greater negative NPOs at the
same magnitude of SAS DDN (Figure 13). The
relationship between SAS DDN and NPOs also
showed an interaction with IA thickness: sites
with IA thickness greater than zero showed
greater negative NPOs at the same magnitude of
SAS DDN (Figure 14). 

The RK was used to model spatial autocor-
relation in the residuals remaining after the final
selected aspatial model. More specifically, an ex-
perimental variogram and variogram model
were prepared from the residuals from the final
aspatial model (Figure 15) using an autofitting
procedure available in the R package automap
(Hiemstra et al., 2009). The variogram shows a
sill with a semivariance of 0.24 and a nugget of
0.12. The implication of this is that about half of
the residual semivariance after the regression
model may be explained by spatial autocorrela-
tion. If this residual variogram had been just a
flat line, the residuals would not have been
kriged, as there would be no improvement in
prediction over the final aspatial model. 

As expected, the RK predictions showed a
higher correlation with the actual NPOs than the
simple aspatial model, as the adjusted R2 for the
selected aspatial mode (Figure 10) was about 33
percent. The squared correlation coefficient for
the RK approach (i.e., the coefficient of deter-
mination) was found to be 52 percent, repre-
senting an improvement from the aspatial
model; however, the performance on data not
used in the development dataset could be worse.
To understand future expected performance on
unsampled areas, a more realistic estimate of fu-
ture performance was prepared for the RK
model by performing a leave-one-out cross-val-
idation (LOOCV). The LOOCV technique in-
volves refitting the model while leaving out one
observation, then deriving an estimate of that
one observation as an out-of-sample case. 

The procedure is performed for all obser-
vations in turn, resulting in an estimate of error
closer to that expected for a completely novel fu-
ture dataset (or in this case, hypothetical per-
formance at unmonitored sites located between
monitored sites). Although the LOOCV R2 was
lower (36 percent) than the overly optimistic
model (52 percent), and some predictions were
far from the observed data (Figure 16), the ma-
jority of LOOCV residuals were within 1 ft.
Specifically, 50 percent of the time the RK model
is expected to predict median water levels at un-
monitored wetlands within a range of 0.70 ft
lower than the actual value to 0.88 ft higher than

Figure 17. Regression-kriging predictions: transformed units.

Figure 18. Regression-kriging predictions: back-transformed to feet.

Figure 19. Regression-kriging standard deviations: transformed units
(with overlay of monitored site locations).
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the actual value. This level of accuracy is consid-
ered useful for wetland recovery planning pur-
poses.  

The RK predictions for the 2008-2014 me-
dian NPOs are presented in map form in trans-

formed (Figure 17) and back-transformed (ft)
units (Figure 18). The back-transformed predic-
tion map shows areas in blue predicted to meet
both the isolated cypress standard threshold of
1.8 ft below HNP, as well as the xeric wetlands
screening criterion of 3.1 ft below HNP (e.g.,

much of CYB and South Pasco, and portions of
Eldridge-Wilde). Other areas shown in yellow
represent those areas predicted to meet the xeric
wetlands criteria, but not the isolated cypress
standard (e.g., Morris Bridge and portions of
CYC). Areas shown in orange were predicted to
have unmonitored site median water levels lower
than 3.1 ft below HNP, including most of Cross
Bar Ranch and parts of CYC and Eldridge-Wilde
(i.e., areas with water levels not predicted to meet
either threshold). 

A map of RK prediction standard devia-
tions is also provided from the RK analysis (Fig-
ure 19). Certain areas had very high uncertainty
due to few sample sites nearby (shown in red),
including some areas on the Eldridge-Wilde and
Cross Bar Ranch wellfields. One of the advan-
tages of the RK approach is that a spatially refer-
enced measure of uncertainty is provided. In
future implementations, it may be useful to
screen out certain areas of high uncertainty from
presentations of results, particularly those areas
distant from the wellfields that have very few
nearby development dataset observations. 

When the appropriate thresholds by soil
type are considered, overall 253 out of the 684
unmonitored sites (37 percent) are predicted to
have met their site-specific thresholds based on
RK predictions for the 2008-2014 period (Fig-
ure 20). Certain areas showed a high degree of
heterogeneity in recovery predictions, such as the
areas around the Northwest Hillsborough Well-
field and the southern part of CYB, while other
areas tended to be more uniform in showing
nearly all unmonitored sites as not recovered

Figure 20. Regression-kriging predictions for 2008-2014 
median wetland water levels transferred to unmonitored sites.

Figure 21. Wetland health assessment data: 
2009 conditions as points.

Figure 22. Wetland health assessment data: 2009 
12 nearest-neighbors inverse-distance-squared interpolation.

Continued on page 45
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(Morris Bridge and much of Cross Bar Ranch)
or nearly all as recovered (central CYB). The El-
dridge-Wilde Wellfield showed a radial pattern
of predicted recovery around the periphery of
the wellfield. 

Ecological Results

Ecological conditions as expressed by the
WHA three-point rating for 2009 are presented
for 868 wetland points located in the NTB area
in the vicinity of the 11 central system Tampa
Bay Water wellfields in Figure 21 (with the points
representing geographic centroids, constrained
to be included within the shape of the original
polygon).

The use of a relatively simple spatial inter-
polation algorithm was investigated to repro-
duce WHA 2009 values for unmonitored
wetlands—inverse distance weighting (IDW).
The IDW algorithm calculates unknown loca-
tions as a weighted average of nearby points,
with the weighting function being a function of
the distance. Application of a 12 nearest-neigh-
bors-squared IDW algorithm to the points in
Figure 21 (WHA 2009 conditions) yielded Fig-
ure 22, where certain areas appear to be domi-
nated by severely stressed conditions (orange
color), such as western and central ELW, while
other areas appear dominated by low- or no-
stress conditions (green color), such as eastern
Starkey (STK) and southern CYB. Some areas in
between the wellfields show a speckled appear-
ance, reflecting abrupt transitions in site WHA
ratings for sites relatively near each other. 

In order to evaluate how useful the IDW ap-

proach might be for assessing WHA values at
completely unmonitored sites, an out-of-sample
evaluation was done. The evaluation was ac-
complished by randomly selecting 51 of the
known data points (approximately 5 percent) to
be excluded from an interpolation, and then
evaluating how well those missing points could
be interpolated from their 12 nearest neighbors.
Table 2 is a classification matrix, also referred to
as a confusion matrix, representing a compari-
son of the actual and predicted classifications of
the 51 out-of-sample points. 

The overall accuracy of the classification is
based on summing the diagonal elements of the
table (i.e., 5, 9, and 18) and dividing by the total
count of 51. Therefore, the 12 nearest-neighbors
IDW achieves an overall accuracy of 63 percent
(i.e., 32 divided by 51). A more useful classifica-
tion measure, however, would be the ability of
the approach to identify sites as either stressed
(WHA of 1 or 2) or nonstressed (WHA of 3).
The classification matrix for this simpler two-
group case is presented in Table 3. The 12 near-
est-neighbors IDW accurately classified the
out-of-sample points 71 percent of the time (36
divided by 51).

This expected out-of-sample performance
of the stressed/nonstressed WHA interpolation
of 71 percent represents a useful level of accuracy.
As an example, based on the 868 WHA 2009
points occurring in the NTB Area, 327 were con-
sidered stressed, for a background rate of stress
of 38 percent (327 divided by 868). If there were
no other information about an unmonitored site,
it could be concluded that there was a 38 percent
chance it would be rated stressed in 2009; how-

ever, if the simple 12 nearest-neighbors IDW spa-
tial interpolation model indicates that the site is
stressed, the positive predicted value can be cal-
culated as the ratio of true positives (18) divided
by the sum of the true positives and the false pos-
itives (i.e., the number of predicted positives or
26), or 69 percent. This distance-weighted model
has substantially increased the chance of correctly
classifying a site as stressed (from a “chance
alone” rate of 38 percent to an “interpolated pre-
dicted” rate of 69 percent). 

It’s possible that optimization could be used
to further improve the accuracy of the IDW ap-
proach. Specifically, there are two primary pa-
rameters required by the IDW algorithm (the
number of neighbors and the distance-weight-
ing). This example shows the result of using 12
nearest neighbors with a weighting factor of in-
verse distance squared. Cross-validation could
be used to select optimal IDW parameters by it-
eratively holding out individual known observa-
tions and estimating them as “test” observations.
Evaluation of the cross-validated errors for these
temporary test observations could be used to se-
lect minimal test errors out of a matrix of pa-
rameters investigated. 

It’s uncertain the extent to which the IDW
model accuracy could be improved through opti-
mization, but it’s unlikely that the values selected
by professional opinion are the most optimal, so
71 percent accuracy may be considered the mini-
mum binary classification accuracy achievable
through IDW. An alternative to optimizing the
IDW parameters would be using an RK approach
similar to that used for the hydrologic analysis

Figure 23. Interpolated wetland health assessment data 
from 2009 conditions assigned to unmonitored sites.

Table 2. Three-group classification matrix for 
5 percent held-out sample for 12 nearest-neighbors 

inverse-distance-weighting interpolation.

Table 3. Two-group classification matrix for
5 percent held-out sample for 12 nearest-neighbors 

inverse-distance-weighting interpolation.

Continued on page 48



48 August 2018 • Florida Water Resources Journal

presented in the previous section, and this is what
is intended for future, similar investigations.  

Interpolated values from the 12 nearest-
neighbors IDW models were spatially assigned
to the unmonitored sites, and the results are pre-
sented in Figure 23. Actually, 81 of the 684 un-
monitored sites (12 percent) had an existing
WHA for 2009, so these ratings superseded the
interpolated value. A review of the resulting
map suggests that nonstressed unmonitored
wetlands were concentrated in south CYB,
much of MB and NWH, and portions of eastern
ELW and western CBR. Other areas in 2009
showed moderate to severe stress conditions. 

Summary and Conclusions

A machine-learning approach was effective
in screening a large number of variables and de-
veloping a spatially explicit estimate of median
wetland water levels at unmonitored wetlands
and lakes in the NTB area. A hybrid spatial in-
terpolation technique, RK was investigated for
interpolating wetland water levels at unmoni-
tored sites. Hybrid spatial interpolation tech-
niques tend to provide more accurate
predictions than either individual approach by
itself (i.e., regression or kriging). 

To demonstrate the RK approach, an in-
formation theoretic-driven best-subsets regres-
sion was first used to develop the best possible
aspatial regression model to predict historical
median (2008-2014) NPOs at 309 monitored
sites with appropriate data. Three variables use-
ful for predicting water levels were selected from
the 12 evaluated: SAS DDN, xeric ratio, and IA
thickness (i.e., presence/absence of confining
unit). Once the best aspatial regression model
was developed, residuals from the model were
kriged to statistically characterize their spatial
autocorrelation. 

A cross-validation approach was used to
assess the likely performance of the RK model
on future datasets. Performance of the final
model was considered useful, with cross-vali-
dated residuals indicating that at least half the
time the combined RK model is expected to pre-
dict water levels at unmonitored wetlands
within a range of 0.70 ft lower than the actual
value to 0.88 ft higher than the actual value.

When the appropriate thresholds by soil
type are considered, overall 253 out of the 684
unmonitored sites (37 percent) met the appro-
priate hydrologic metric, based on RK predic-
tions for the 2008-2014 period. Certain areas
showed a high degree of heterogeneity in me-
dian wetland water-level predictions, such as the
areas around the Northwest Hillsborough Well-
field and the southern part of CYB, while other

areas tended to be more uniform in showing
nearly all unmonitored sites as not meeting the
metric (Morris Bridge and much of Cross Bar
Ranch), or nearly all as meeting the established
metric (central CYB). The Eldridge-Wilde Well-
field showed a radial pattern of predicted re-
covery around the periphery of the wellfield.

The RK framework provides the flexibility
to include other data-mining algorithms in the
“regression” portion. For example, Appelhans et
al. (2015) studied 14 machine-learning algo-
rithms and kriging for interpolating air tem-
perature on Mt. Kilimanjaro and found that
numerous tree-based modern data-mining al-
gorithms outperformed both linear regression
models and universal kriging, including sto-
chastic gradient boosting, cubist, and random
forest. Ultimately, the authors elected to use an
RK framework with the cubist model in place
of regression (Appelhans et al., 2015). It was rec-
ommended that one or more modern data-
mining algorithms be tested in a future study for
comparison to the multiple linear regression ap-
proach used in this study. Although prediction
using a different algorithm may be improved,
it’s likely that interpretability of the effects of the
various auxiliary variables will suffer, but pre-
diction is more important than interpretability
for the application of estimating NPOs at the
unmonitored sites. If multiple predictions are
available from independent techniques, each
with their own measure of error, they may be
combined by weighting their predictions for
each cell by the inverse of their errors (Hengl,
2009). Intuitively, diverse algorithms that per-
form relatively poorly in different geographic
areas could be combined to yield overall im-
proved predictions throughout the region of in-
terest. 

The five-year WHA program provides a
spatially and temporally rich dataset able to sup-
port interpolation of wetland conditions, and
potentially, changes in conditions over time. The
WHA scores representing 2009 conditions doc-
umented at 868 sites (and including nonstressed
sites from 1997/1998) were used with an IDW
algorithm to successfully interpolate ecological
conditions at unmonitored sites. Using an out-
of-sample analysis, the distance-weighted model
substantially increased the chance of correctly
classifying a site as stressed (from a “chance
alone” rate of 38 percent to an “interpolated pre-
dicted” rate of 69 percent). 

The availability of multiple sampling
events separated by approximate five-year peri-
ods also would allow a metric calculation of
ecological change in a future study. An update
of the analysis presented here will be done to in-
clude data collected in 2016, which are expected
to be more representative of postcutback eco-

logical conditions because certain wellfields
(e.g., Starkey) were not able to reduce ground-
water production until the end of 2007. In ad-
dition, a time lag is anticipated between the time
of production cutbacks and ecological recovery,
so the additional years between the 2009 condi-
tions and 2016 conditions are expected to reveal
a more nearest-neighbor accurate picture of the
extent of recovery.

It’s anticipated that both hydrologic and
ecological condition interpolations will provide
valuable evidence for assigning unmonitored
sites to appropriate RA status bins. It's recom-
mended that geostatistical predictions of hy-
drologic parameters be given precedence over
ecologic predictions because hydrologic changes
may precede ecological changes in wetlands, and
hydrologic data measurements are inherently
more precise than ecological WHA ratings.
Geostatistical predictions of NPO may be used
to quickly identify those sites believed to be “re-
covered,” or meeting their site-specific median
water level threshold. Sites predicted to not meet
their site-specific thresholds will be categorized
as either “improved, not fully recovered”
(INFR), “not fully recovered, continuing well-
field impact” (NFRC), or impacted due to other
causes (e.g., surface drainage alterations). Dis-
tinguishing between the first two cases may be
primarily based on how far below predicted
water levels are relative to the HNP, or possibly,
the wetland bottom. (INFR sites might be near
their site-specific thresholds, while NFRC sites
are expected to be still relatively far below their
thresholds.) The WHA predictions (and pre-
dicted changes in WHA conditions) are ex-
pected to provide additional evidence to guide
categorization. 

The results of this study represent a “proof
of concept” only. The results suggest RK provides
a useful method for recovery analyses of un-
monitored wetlands in the area of investigation.
The study will be repeated with updated datasets
and using other machine-learning approaches
(such as random forest). In addition, Tampa Bay
Water is using a “weight of evidence” approach
to recovery analysis. The RK results will be one
parameter considered in the final assessment of
recovery status; other hydrological and ecologi-
cal analyses and professional opinions will fac-
tor in the final decisions regarding recovery
status. An attempt will be made to assess the rel-
ative accuracy of the RK predictions for wetlands
in developed landscapes (e.g., suburban areas),
as the water budgets of these wetlands may be
affected by surface drainage or land-use influ-
ences not reflected in the RK model.

It’s recommend that the more time-inten-
sive tools available to assess unmonitored
sites—aerial imagery analysis and field visits—

Continued from page 47
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be reserved for validating assignments based on
the statistical binning process; that is, represen-
tative sites may be visited to confirm, for exam-
ple, that recent hydrological and ecological field
indicators point to a particular group of sites
being below their threshold, but making suffi-
cient improvement to be considered INFR. In
addition to visiting representative sites of well-
defined groups, it’s likely there will be some un-
usual or uncertain sites that require field visits to
confirm unusual circumstances, such as sus-
pected drainage alterations, excessive soil subsi-
dence, or other site-specific factors.

In conclusion, to answer the question
posed by this article’s title, it’s believed that ma-
chine-learning techniques, combined with geo-
statistical methods, show great promise for
assessing recovery of water levels and ecological
conditions at unmonitored wetlands and lakes.
More broadly, the application of a hybrid statis-
tical method can allow water managers to make
better predictions by accounting for known
variables believed to influence water levels, as
well as unknown, spatially autocorrelated fac-
tors. 
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